von Martina Gebbe ; Jan-Niclas Siemß ; Matthias Gersemann ; Hauke Müntinga ; Sven F. Herrmann ; Claus Lämmerzahl ; Holger Ahlers ; Naceur Gaaloul ; Christian Schubert ; Klemens Hammerer ; Sven Abend ; Ernst Maria Rasel
von Christian Deppner ; Waldemar Herr ; Merle Cornelius ; Peter Stromberger ; Tammo Sternke ; Christoph Grzeschik ; Alexander Grote ; Jan Rudolph ; Sven F. Herrmann ; Markus Krutzik ; André Wenzlawski ; Robin Corgier ; Eric Charron ; David Guéry-Odelin ; Naceur Gaaloul ; Claus Lämmerzahl ; Achim Peters ; Patrick Windpassinger ; Ernst Maria Rasel
American Mathematical Society Notices of the American Mathematical Society Ann Arbor, Mich. [u.a.] : Soc., 1995 67(2020), 11, Seite 1755-1767 Online-Ressource
von Henning Albers ; Alexander Herbst ; Logan Latham Richardson ; Hendrik Heine ; Dipankar Nath ; Jonas Hartwig ; Christian Schubert ; Christian Vogt ; Marian Woltmann ; Claus Lämmerzahl ; Sven Herrmann ; Wolfgang Ertmer ; Ernst Maria Rasel ; Dennis Schlippert
The European physical journal. D, Atomic, molecular, optical and plasma physics Berlin : Springer, 1998 Volume 74 (2020), issue 7, article 145, Seite 1-9 Online-Ressource
Physical geography; Astrophysics; Classical and Quantum Gravitation, Relativity Theory; Gravitation; Geophysics; Space sciences; Physical measurements; Measurement GeodäsieRelativitätstheorieVermessungPhysik
Due to steadily improving experimental accuracy, relativistic concepts - based on Einstein’s theory of Special and General Relativity - are playing an increasingly important role in modern geodesy. This book offers an introduction to the emerging field of relativistic geodesy, and covers topics ranging from the description of clocks and test bodies, to time and frequency measurements, to current and future observations. Emphasis is placed on geodetically relevant definitions and fundamental methods in the context of Einstein’s theory (e.g. the role of observers, use of clocks, definition of reference systems and the geoid, use of relativistic approximation schemes). Further, the applications discussed range from chronometric and gradiometric determinations of the gravitational field, to the latest (satellite) experiments. The impact of choices made at a fundamental theoretical level on the interpretation of measurements and the planning of future experiments is also highlighted. Providing an up-to-the-minute status report on the respective topics discussed, the book will not only benefit experts, but will also serve as a guide for students with a background in either geodesy or gravitational physics who are interested in entering and exploring this emerging field
Introduction -- Time and frequency metrology in the context of relativistic geodesy -- Chronometric geodesy: methods and applications -- Measuring the gravitational field in General Relativity: From deviation equations and the gravitational compass to relativistic clock gradiometry -- A Snapshot of J. L. Synge -- General Relativistic Gravity Gradiometry -- Reference-ellipsoid and normal gravity field in post-Newtonian geodesy -- Anholonomity in Pre and Relativistic Geodesy -- Epistemic relativity: An experimental approach to physics -- Use of geodesy and geophysics measurements to probe the gravitational interaction -- Operationalization of basic relativistic measurements -- Can spacetime curvature be used in future navigation systems? -- World-line perturbation theory -- On the applicability of the geodesic deviation equation in General Relativity -- Measurement of frame dragging with geodetic satellites based on gravity field models from CHAMP, GRACE and beyond -- Tests of General Relativity with the LARES Satellites
Fundamental Theories of PhysicsSpringerLinkSpringer eBook Collection
von Leor Barack ; Vitor Cardoso ; Samaya Nissanke ; Thomas P. Sotiriou ; Abbas Askar ; Chris Belczynski ; Gianfranco Bertone ; Edi Bon ; Diego Blas ; Richard Brito ; Tomasz Bulik ; Clare Burrage ; Christian T. Byrnes ; Chiara Caprini ; Masha Chernyakova ; Piotr Chruściel ; Monica Colpi ; Valeria Ferrari ; Daniele Gaggero ; Jonathan Gair ; Juan García-Bellido ; S. F. Hassan ; Lavinia Heisenberg ; Martin Hendry ; Ik Siong Heng ; Carlos Herdeiro ; Tanja Hinderer ; Assaf Horesh ; Bradley J. Kavanagh ; Bence Kocsis ; Michael Kramer ; Alexandre Le Tiec ; Chiara Mingarelli ; Germano Nardini ; Gijs Nelemans ; Carlos Palenzuela ; Paolo Pani ; Albino Perego ; Edward K. Porter ; Elena M. Rossi ; Patricia Schmidt ; Alberto Sesana ; Ulrich Sperhake ; Antonio Stamerra ; Leo C. Stein ; Nicola Tamanini ; Thomas M. Tauris ; L. Arturo Urena-López ; Frederic Vincent ; Marta Volonteri ; Barry Wardell ; Norbert Wex ; Kent Yagi ; Tiziano Abdelsalhin ; Miguel Ángel Aloy ; Pau Amaro-Seoane ; Lorenzo Annulli ; Claus Lämmerzahl ; Jutta Kunz ; Lucas Gardai Collodel ; Jose Luis Blázquez-Salcedo ; Manuel Arca-Sedda
The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on ‘Black holes, Gravitational waves and Fundamental Physics’.
Classical and quantum gravity Bristol : IOP Publ., 1984 36(2019), 14, Artikel-ID 143001, Seite 1-178 Online-Ressource
Lichtpuls-Atominterferometrie findet in vielen Bereichen Anwendung, z.B. in der Gravimetrie, der Gradiometrie oder in der Messung von Rotationen. Das in dieser Arbeit beschriebene Experiment kann Bose-Einstein Kondensate mit annähernd 105 Rb Atomen bei einer Repetitionsrate von über 1Hz erzeugen. Darüber hinaus ist der Aufbau mobil, was für praktische Anwendungen und Experimente im Weltall wichtig ist. Jede Präzisionsmessung mittels Atominterferometrie stellt hohe Anforderungen an die magnetische Feldumgebung, die Kontrolle über Position und Geschwindigkeit des atomaren Ensembles sowie dessen Geschwindigkeitsstreuung. Diese Punkte werden systematisch und gründlich untersucht. Es werden Geschwindigkeitsstreuungen von 140μm/s entsprechend einer kinetischen Temperatur von nur 70pK experimentell realisiert. Diese Kollimation in 3D war durch das Zusammenspiel einer Quadrupolmode des Bose-Einstein Kondensats in der Auskoppelfalle zusammen mit einer axialsymmetrischen magnetischen Linse möglich. <dt.>
Light-pulse atom interferometry has a wide range of applications, for example in the fields of gravimetry, gradiometry and inertial sensing. The experiment described in this work can create Bose-Einstein condensates of almost 105 Rb atoms at a repetition rate exceeding 1Hz. The setup is also mobile, which is important for practical applications as well as for space-based experiments. Any precision measurement using atom interferometry has demanding requirements regarding the magnetic field environment, the control over the position and the velocity of the atomic ensemble as well as its velocity spread. All these points are systematically and thoroughly investigated. An ultrasmall velocity spread of 140μm/s equivalent to a kinetic temperature of 70pK is experimentally realized. This collimation in 3D was possible by the combination of a quadrupole mode collective excitation of the Bose-Einstein condensate within the release trap and an axially symmetric magnetic lens. <engl.>