Neurostimulation is a mainstream treatment option for major depression. Neuromodulation techniques apply repetitive magnetic or electrical stimulation to some neural target but significantly differ in their invasiveness, spatial selectivity, mechanism of action, and efficacy. Despite these differences, recent analyses of transcranial magnetic stimulation (TMS) and deep brain stimulation (DBS)-treated individuals converged on a common neural network that might have a causal role in treatment response. We set out to investigate if the neuronal underpinnings of electroconvulsive therapy (ECT) are similarly associated with this causal depression network (CDN). Our aim here is to provide a comprehensive analysis in three cohorts of patients segregated by electrode placement (N = 246 with right unilateral, 79 with bitemporal, and 61 with mixed) who underwent ECT. We conducted a data-driven, unsupervised multivariate neuroimaging analysis Principal Component Analysis (PCA) of the cortical and subcortical volume changes and electric field (EF) distribution to explore changes within the CDN associated with antidepressant outcomes. Despite the different treatment modalities (ECT vs TMS and DBS) and methodological approaches (structural vs functional networks), we found a highly similar pattern of change within the CDN in the three cohorts of patients (spatial similarity across 85 regions: r = 0.65, 0.58, 0.40, df = 83). Most importantly, the expression of this pattern correlated with clinical outcomes (t = −2.35, p = 0.019). This evidence further supports that treatment interventions converge on a CDN in depression. Optimizing modulation of this network could serve to improve the outcome of neurostimulation in depression.
Online verfügbar: 18. September 2024, Artikelversion: 22. September 2024 ; Gesehen am 20.05.2025
The Global ECT MRI Research Collaboration (GEMRIC) has collected clinical and neuroimaging data of patients treated with electroconvulsive therapy (ECT) from around the world. Results to date have focused on neuroimaging correlates of antidepressant response. GEMRIC sites have also collected longitudinal cognitive data. Here, we summarize the existing GEMRIC cognitive data and provide recommendations for prospective data collection for future ECT-imaging investigations. We describe the criteria for selection of cognitive measures for mega-analyses: Trail Making Test Parts A (TMT-A) and B (TMT-B), verbal fluency category (VFC), verbal fluency letter (VFL), and percent retention from verbal learning and memory tests. We performed longitudinal data analysis focused on the pre-/post-ECT assessments with healthy comparison (HC) subjects at similar timepoints and assessed associations between demographic and ECT parameters with cognitive changes. The study found an interaction between electrode placement and treatment number for VFC (F(1,107) = 4.14, p = 0.04). Higher treatment was associated with decreased VFC performance with right unilateral electrode placement. Percent retention showed a main effect for group, with post-hoc analysis indicating decreased cognitive performance among the HC group. However, there were no significant effects of group or group interactions observed for TMT-A, TMT-B, or VFL. We assessed the current GEMRIC cognitive data and acknowledge the limitations associated with this data set including the limited number of neuropsychological domains assessed. Aside from the VFC and treatment number relationship, we did not observe ECT-mediated neurocognitive effects in this investigation. We provide prospective cognitive recommendations for future ECT-imaging investigations focused on strong psychometrics and minimal burden to subjects.
Journal of psychiatric research Amsterdam [u.a.] : Elsevier Science, 1961 179(2024) vom: Nov., Seite 199-208 Online-Ressource
von Clemens Mielacher ; Johannes Schultz ; Maximilian Kiebs ; Torge Dellert ; Anna Metzner ; Larissa Graute ; Hanna Högenauer ; Wolfgang Maier ; Claus Lamm ; René Hurlemann