Online veröffentlicht: 8. März 2023 ; Gesehen am 17.09.2024
Artificial Intelligence; Cardiovascular disease; Data and biomaterial collection; German Centre for Cardiovascular Research; Medical Ethics; Research platform; Standardisation
The German Centre for Cardiovascular Research (DZHK) is one of the German Centres for Health Research and aims to conduct early and guideline-relevant studies to develop new therapies and diagnostics that impact the lives of people with cardiovascular disease. Therefore, DZHK members designed a collaboratively organised and integrated research platform connecting all sites and partners. The overarching objectives of the research platform are the standardisation of prospective data and biological sample collections among all studies and the development of a sustainable centrally standardised storage in compliance with general legal regulations and the FAIR principles. The main elements of the DZHK infrastructure are web-based and central units for data management, LIMS, IDMS, and transfer office, embedded in a framework consisting of the DZHK Use and Access Policy, and the Ethics and Data Protection Concept. This framework is characterised by a modular design allowing a high standardisation across all studies. For studies that require even tighter criteria additional quality levels are defined. In addition, the Public Open Data strategy is an important focus of DZHK. The DZHK operates as one legal entity holding all rights of data and biological sample usage, according to the DZHK Use and Access Policy. All DZHK studies collect a basic set of data and biosamples, accompanied by specific clinical and imaging data and biobanking. The DZHK infrastructure was constructed by scientists with the focus on the needs of scientists conducting clinical studies. Through this, the DZHK enables the interdisciplinary and multiple use of data and biological samples by scientists inside and outside the DZHK. So far, 27 DZHK studies recruited well over 11,200 participants suffering from major cardiovascular disorders such as myocardial infarction or heart failure. Currently, data and samples of five DZHK studies of the DZHK Heart Bank can be applied for.
Clinical research in cardiology Berlin : Springer, 2006 112(2023), 7, Seite 923-941 Online-Ressource
von M. Schroeter ; Andreas Engelhardt ; Frank Joachim Erbguth ; A. Ferbert ; Frank-Michael Reinhardt ; P. Vieregge ; C.-W. Wallesch ; B. Widder ; G. R. Fink
Solarzellen auf Basis des Halbleiters Cu(In,Ga)Se2 (CIGS) sind dabei, die Grenze zur Kommerzialisierung zu überschreiten. Ein Spitzenwirkungsgrad von bisher knapp 19% verspricht ein großes Potential. Leider hinkt das physikalische Verständnis den technologischen Erfolgen hinterher. In der vorliegenden Arbeit wird der Ladungstransport und die Defektphysik von Solarzellen und Schottky-Kontakten auf Basis von CIGS mit Hilfe von Admittanzspektroskopie, DLTS und Quantenausbeute untersucht. Zusätzlich werden Simulationsrechnungen (mit SCAPS-1D) vorgenommen. Es wird gezeigt, daß mit Hilfe der Admittanzspektroskopie eine Qualitätskontrolle der Solarzellen möglich ist. Durch differenzierte DLTS-Methoden (u.a. Leitwert-, Reverse- und Laplace-DLTS) wird die komplizierte Defektphysik von CIGS umfassend untersucht. Die Messung der Quantenausbeute und die vergleichenden Simulationsrechnungen weisen auf einen starken Einfluß der Korngrenzen auf den Ladungstransport hin. Weiterhin wird der Einfluß von Natrium sowohl auf die Kornmorphologie, als auch auf die elektrischen Eigenschaften des CIGS-Absorbers diskutiert. <dt.>
Solar cells on base of the semiconductor Cu(In,Ga)Se2 (CIGS) are to be crossed thereby the boundary for commercialization. An efficiency from so far about 19% promises a large potential. Unfortunately the physical understanding limps to technological successes afterwards. In the available work the charge transport and the defect physics are examined by solar cells and Schottky-contacts on base of CIGS with the help of admittance spectroscopy, DLTS and quantum yield. Additionally calculations (with SCAPS-1D) are made. It is shown that with the help of the admittance spectroscopy a quality control of the solar cells is possible. By different DLTS methods (among others Conductance-, Reverse- and Laplace-DLTS) the complicated defect physics is comprehensive examined. The measurement of the quantum yield and the comparative calculations refer to a strong influence of the grain boundaries on the charge transfer. Further the influence of sodium is discussed both on the grain morphology and on the electrical characteristics of the CIGS absorber. <engl.>
von Frank Engelhardt ; Lars Bornemann ; Marc Köntges ; Thorsten Meyer ; Jürgen Parisi ; E. Pschorr-Schoberer ; B. Hahn ; W. Gebhardt ; W. Riedl ; Uwe Rau