This thesis aims to develop new OpenFOAM codes to simulate the ice accretion on wind turbine blades in cold climates and the effects of ice-phobic coatings on the overall anti-icing heat. To avoid high computational costs of resolving complex profiles of ice, rough wall functions are used to model the effects of roughness on the airflow without completely resolving the flow field. Water particles carried by air are then tracked using Lagrangian particle tracking to calculate the exact locations of impingement on the surface to determine whether the particles are pinned or bouncing on the surface. The water mass on the surface is determined and the thermodynamic model of icing is solved to determine the ice profile. A 3D rotating wind turbine blade is simulated using the quasi-3D technique and compared with other CFD codes for validation and the expected minimum anti-icing heat in case ordinary surfaces is compared to the ice-phobic case to study the feasibility of such coatings.
Ziel dieser Doktorarbeit ist die Entwicklung neuer Codes innerhalb OpenFOAM zur Simulation der Eisbildung, das auf dem Rotorblatt im kalten Klima bildet und den Energiebedarf für das Anti-Eis-System zu berechnen. Um übermäßige Berechnungskosten für die Auflösung komplexer Eisprofile zu vermeiden, können rauen Wandfunktionen verwendet werden. Die Luft mitgeführten Wasserpartikel werden mithilfe der Lagrangeschen Partikelverfolgung, um den genauen Ort des Auftreffens der Partikel auf der Oberfläche zu berechnen und ob sie anhaften bleiben oder zurückprallen. Die Wassermasse auf der Oberfläche wird danach grechnet und das thermodynamische Modell der Vereisung angewandt wird, um das endgültige Eisprofil zu ermitteln. Ein 3D-Windturbinenblatt unter Verwendung der Quasi-3D-Technik ist eingesetzt wird. Diese Technik wird dann mit anderen CFD-Codes verglicht. Außerdem wird ein Vergleich zwischen der erwarteten Anti-Icing-Wärme bei normalen und eisabweisenden Oberflächen durchgeführt.
Windenergie ist ein wichtiger Teil der Energiewende. Grundlagenforschung und Weiterentwicklung von Windturbinen sind daher unerlässlich. Um zuverlässige Untersuchungen durchzuführen, werden realistische Strömungen im Windkanal benötigt. In dieser Arbeit wird eine neue Methode zur Erzeugung großskaliger turbulenter Strömungen im Windkanal mittels aktiver Gitter entwickelt. Es wurde gezeigt, dass die durch aktive Gitter aufprägbaren Strukturen von der reduzierten Frequenz abhängen. Die erzeugten Strömungen unterlaufen eine Transition und bilden weit hinter dem Gitter eine voll entwickelte Turbulenz aus. In Kombination mit einer dynamischen Drehzahlvariation der Windkanalgebläse lassen sich sehr große Reynoldszahlen und integrale Längen erzeugen. Die Dynamik einer Modellturbine unter diesen Anströmungen kann mit Hilfe des Langevin-Ansatzes für den gesamten Betriebsbereich bestimmt werden. Damit wird eine Methode zur systematischen Untersuchung von Windturbinen im Windkanal bereitgestellt.
Wind energy is an important part of the energy transformation. Fundamental research and further development of wind turbines are therefore essential. To perform reliable investigations, realistic flows in the wind tunnel are required. In this work, a new method for generating large scale turbulent flows in the wind tunnel by means of active grids is developed. It was shown that the structures that can be imprinted by active grids depend on the reduced frequency. The generated flows undergo a transition downstream and form a fully developed turbulence far behind the active grid. In combination with a dynamic speed variation of the wind tunnel fans, very large Reynolds numbers and integral length scales can be achieved. The dynamics of a model turbine under these inflows can be determined for the entire operating range by using the Langevin approach. This provides a method for the systematic investigation of wind turbines under realistic conditions in a wind tunnel.
Der 'dynamic inflow' Effekt beschreibt die instationäre aerodynamische Reaktion auf schnelle Änderungen der Rotorbelastung einer Windenergienlage. Ingenieursmodelle (IMs) werden in konstruktionsrelevanten aeroelastischen Simulationen eingesetzt, um diesen Effekt zu erfassen. Ziel dieser Arbeit war es, das Verständnis des 'dynamic inflow' Effektes durch Windkanalexperimente zu verbessern. Zunächst wurde eine skalierte Modell-Windturbine entworfen. Anschließend wurde ein Windkanalexperiment mit einem Blatt-Pitch-Schritt durchgeführt. Die relevante Rotorströmung wurde mit einer neuen Methode extrahiert. Diese Messungen wurden mit IMs verglichen. Schließlich wurde eine schnelle Rotorlaständerung durch eine Windböe untersucht. Vergleiche mit IMs zeigten große Abweichungen vom Experiment und eine Modifikation wurde vorgeschlagen. Diese experimentelle Arbeit erweitert das Verständnis des 'dynamic inflow' Effektes für Pitch-Schritte und stellt die Relevanz des Effekts für Böen dar.
The dynamic inflow phenomenon describes the unsteady aerodynamic response to fast changes in the rotor loading of a wind turbine. Aeroelastic design calculations depend on engineering models (EMs) to catch this effect. The objective of this thesis was to enhance the understanding of the dynamic inflow effect based on wind tunnel experiments. Firstly, a scaled model wind turbine was designed. Next, wind tunnel experiments with collective blade pitch steps were conducted. In addition to inflow, wake and load measurements, the dynamics of the induced axial and tangential velocities were extracted by a novel method and compared to EMs. Lastly, fast rotor load changes due to tailor-made wind gusts were investigated. Comparisons to EMs showed large deviations from the experiment, and a modification was suggested. This experimentally driven thesis increases the understanding of the mechanisms of dynamic inflow for pitch steps and provided evidence of the relevance for gust situations.